Deactivation pathways of neutral Ni(II) polymerization catalysts.
نویسندگان
چکیده
The novel dimethyl sulfoxide (DMSO)-coordinated complex [(N,O)Ni(CH(3))(DMSO)] {1-DMSO; (N,O) = kappa(2)-N,O-(2,6-(3,5-(F(3)C)(2)C(6)H(3))(2)C(6)H(3))-N=CH-(3,5-I(2)-2-OC(6)H(2))} was found to be a well-defined, very reactive precursor that enables direct observation of the activation and deactivation of neutral Ni(II) catalysts. Preparative reaction with ethylene afforded the ethyl complex [(N,O)Ni((alpha)CH(2)(beta)CH(3))(DMSO)] (2-DMSO). 2-DMSO is subject to interconversion of the (alpha)C and (beta)C moieties via an intermediate [(N,O)Ni(II)H(ethylene)] complex (this process is slow on the NMR time scale). Exposure of 1-DMSO to ethylene in DMSO solution at 55 degrees C results in partial reaction to form propylene (pseudo-first-order rate constant k(ins,Me) = 6.8 +/- 0.3 x 10(-4) s(-1) at an ethylene concentration of 0.15 M) and conversion to 2-DMSO, which catalyzes the conversion of ethylene to butenes. A relevant decomposition route of the catalyst precursor is the bimolecular elimination of ethane [DeltaH(double dagger) = (57 +/- 1) kJ mol(-1) and DeltaS(double dagger) = -(129 +/- 2) J mol(-1) K(-1) over the temperature range 55-80 degrees C]. This reaction is specific to the Ni(II)-Me complex; corresponding homocoupling of the higher Ni(II)-alkyls of the propagating species in catalytic C-C linkage of ethylene was not observed, but Ni(II)-Me reacted with Ni(II)-Et to form propane, as concluded from studies with 2-DMSO and its analogue that is perdeuterated in the Ni(II)-Et moiety. Under the reaction conditions of the aforementioned catalytic C-C linkage of ethylene, additional ethane evolves from the reaction of intermediate Ni(II)-Et with Ni(II)-H. This is independently supported by reaction of 2-DMSO with the separately prepared hydride complex [(N,O)NiH(PMe(3))] (3-PMe(3)) to afford ethane. Kinetic studies show this reaction to be bimolecular [DeltaH(double dagger) = (47 +/- 6) kJ mol(-1) and DeltaS(double dagger) = -(117 +/- 15) J mol(-1) K(-1) over the temperature range 6-35 degrees C]. In contrast to these reactions identified as decomposition routes, hydrolysis of Ni(II)-alkyls by added water (D(2)O; H(2)O) occurred only to a minor extent for the Ni(II)-Me catalyst precursor, and no clear evidence of hydrolysis was observed for higher Ni(II)-alkyls. The rate of the aforementioned insertion of ethylene in 1-DMSO and the rate of catalytic ethylene dimerization are not affected by the presence of water, indicating that water also does not compete significantly with the substrate for binding sites.
منابع مشابه
Highly Active Binuclear Neutral Nickel(II) Catalysts Affording High Molecular Weight Polyethylene
A series of new binuclear neutral κ-N,O-chelated Ni(II) complexes [(H2C)n{[(2,6-R2-4-yl-C6H2)NdC(H)-(3,5-I2-2-O-C6H2)-κ-N,O]Ni(CH3)(pyridine)}2] (R ) iPr, 3,5-(CF3)2C6H3; n ) 0, 1) are reported. The complexes are single-component catalyst precursors for ethylene polymerization. Catalyst activities exceed those of mononuclear analogues studied substantially. With 3.4 × 10 TO h, high molecular we...
متن کاملZiegler-Natta catalysts for propylene polymerization – Interaction of an external donor with the catalyst
The interaction of the external donor (propyltrimethoxysilane - PTMS) with titanium-magnesium catalysts (TMCs) containing dibutylphthalate (DBP) as internal donor, which were prepared in different ways, was studied by chemical analysis and infrared diffuse reflectance spectroscopy (DRIFTS). The chemical composition of the catalysts after their interaction with heptane solutions of PTMS, PTMS/Al...
متن کاملEthylene polymerization in supercritical carbon dioxide with binuclear nickel(II) catalysts.
A series of new, highly fluorinated neutral (kappa(2)-N,O) chelated Ni(II) binuclear complexes based on salicylaldimines bridged in p-position of the N-aryl group were prepared. The complexes are single-component catalyst precursors for ethylene polymerization in supercritical carbon dioxide and toluene. Solubility of the catalyst precursors in supercritical carbon dioxide is effected by a larg...
متن کاملDissymmetric dinuclear transition metal complexes as dual site catalysts for the polymerization of ethylene
A series of dissymmetric dinuclear complexes were synthesized, as dual site catalysts in ethylene polymerization, by coupling the allylated a-diimine complexes of the metals Ti, Zr, V, Ni and Pd with the ansa-zirconocene complex [C5H4-SiH(Me)-C5H4]ZrCl2 possessing a hydride silane moiety. The different stages of syntheses included the formation of bis(cyclopentadienide)methyl silane which was u...
متن کاملRemote substituents controlling catalytic polymerization by very active and robust neutral nickel(II) complexes.
More than 70 million tons of polyethylene and polypropylene are produced annually. The majority is prepared by catalytic polymerization employing Ziegler or Phillips catalysts based on early transition metals. More recently, olefin polymerization by complexes of late transition metals has also received increasing attention. A major motivation is their higher tolerance towards polar reagents due...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of the American Chemical Society
دوره 131 4 شماره
صفحات -
تاریخ انتشار 2009